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NEW APPROACH TO MODEL FITTING
IN MULTI-DETECTOR GPC

Y. Brun,* M. V. Gorenstein, N. Hay 

Waters Corporation
34 Maple Street

Milford, MA 01757, USA

ABSTRACT

The main limitation of multi-detector GPC arises from the
nature of detector sensitivities in the tails of a polymer distribu-
tion.  In the low molecular weight tail of this distribution, molec-
ular weight-sensitive detectors (such as a capillary viscometer or
a static laser light-scattering photometer) have low sensitivity
while concentration detectors (e.g., differential refractometer)
have high sensitivity.  This situation is reversed in the high mole-
cular weight tail.

These imbalances in sensitivity raise the question of how best
to obtain an estimate of column calibration curves.  The question
is central to the successful application of the multi-detector GPC
technique.  For example, the accuracy and precision with which
structural information for polymers with broad molecular weight
distribution, especially with long-chain branches, can be obtained
depends critically on the accurate estimation of such calibration
curves in the tails. 

Traditionally, calibration curves are fit to the logarithm of the
ratios of detector responses.  However, the logarithm of a ratio
will not give meaningful values in the regions where at least one
of the responses is near zero.  Thus, low detector sensitivity in the
tails requires that a calibration curve be fit only to the heart of the
peak, where all detectors have good response.  The optimized

2615

Copyright © 2000 by Marcel Dekker, Inc. www.dekker.com

J. LIQ. CHROM. & REL. TECHNOL., 23(17), 2615–2639 (2000)

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
4
3
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



curve is then extrapolated to the regions in the tails that were
excluded from the fit.

This data truncation has two consequences that limit the accu-
racy and precision of the multi-detector GPC technique.
Truncation eliminates potentially useful responses with which to
constrain the calibration curves, and the resulting curves can be
sensitive to the choice of the fitting region. 

We describe a new data analysis method for multi-detector
GPC where the complete chromatographic profile obtained from
one detector is compared, in a least-squares sense, to a model that
is a function of responses from the other detector.  This formula-
tion of least-squares avoids the use of logarithms, ratios, and
eliminates the need for extrapolation.  The approach allows the
inclusion of regions in the least-squares fit that contain low detec-
tor’s signal, e.g., near baseline responses that fluctuate about zero
from either, or both, detectors. 

We apply this approach to obtain column calibration curves
with each of two molecular weight-sensitive detectors, coupled to
a GPC system.  Such calibration curves are the necessary inter-
mediate steps in determining the polymer’s molecular weight and
intrinsic viscosity distributions.  If suitable calibration standards
are available, we further show how the polymer’s intrinsic viscos-
ity law can be obtained directly from dual-detector responses
without requiring - or depending on - a sample-dependent cali-
bration curve. 

INTRODUCTION

Multi-detector GPC is a powerful technique that can simultaneously char-
acterize a wide range of a polymer’s molecular properties.  A conventional GPC
system usually incorporates a single concentration detector, such as differential
refractive index (DRI) detector.  A multi-detector GPC system adds one or more
molecular weight-sensitive detectors, typically a capillary viscometer (CV)
and/or a static laser light-scattering photometer (LS).  In conventional GPC, the
determination of the absolute (actual) molecular weight and molecular weight
distribution (MWD) of a polymer sample requires the use of polymer standards
with chemical structure identical to the sample to calibrate the column. Dual-
detector DRI-CV allows column calibration with standards having a different
chemical structure than the sample.  Dual-detector DRI-LS can calibrate the
column using the sample itself, thereby, determining the MWD without the
need of special calibrators.
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There are additional benefits from the use of molecular weight-sensitive
detectors.  These include an improved characterization of high molecular
weight fractions of the MWD, the ability to calculate molecular parameters
such as the intrinsic viscosity distribution (IVD), the Mark-Houwink coeffi-
cients, the branching frequency across the polymer distribution, and the poly-
mer conformation plot. 

The price to pay for these benefits is the increased complexity of the data
calibration and interpretation in multi-detector GPC.  Thus, processing these
data requires accurate values for instrument calibration constants, sample con-
centration, injection volume, flow rate, and interdetector volume(s).  An error
in any of these values will bias the calculated MWD.1 Although, the accurate
determination of these parameters complicates the data reduction in multi-
detector GPC compared with its conventional counterpart,1 these additional
requirements do not limit the potential of this approach to polymer characteri-
zation. 

The real challenge in multi-detector GPC data treatment arises from the
nature of the detectors’ sensitivities: molecular weight-sensitive detectors have
low response at the low molecular weight end of a polymer distribution, and
concentration detectors have low sensitivity at the high molecular weight end of
this distribution.2 In general, the local (slice) intrinsic viscosity or molecular
weight values calculated from the DRI-CV or DRI-LS detector combinations,
respectively, show high noise levels at the ends of the molecular weight range
of the sample.  Consequently, number-average molecular weight of polymers
with low-molecular weight tail calculated with the use of molecular weight-sen-
sitive detectors usually exceeds the true value; these values can be obtained
more accurately with the concentration detector alone.  

On the other hand, the accuracy of molecular weight distribution and other
structural information about polymers with high-molecular weight tails, espe-
cially with long-chain branches, is limited by the sensitivity level of the con-
centration detector.  However, this information is very important, for example,
in determination of viscoelastic properties of polymer melts, such as dynamic
moduli and steady-state recoverable compliance.  These properties are ex-
tremely sensitive to minute variations in the high molecular weight tail of a
polymer MWD,3-5 which makes the microscopic approach to melt rheology in
some cases more appropriate than GPC technique for evaluating molecular dis-
tributions of such polymers.6

The proper choice of data analysis methodology is the key to solving the
aforementioned sensitivity problems in multi-detector GPC.  In some cases, a
least-squares fit of column calibration curve (molecular weight or intrinsic vis-
cosity versus elution volume) to the heart of a peak, followed by model extrap-
olation, is an effective way to decrease the undesirable effect of high noise lev-

MODEL FITTING IN MULTI-DETECTOR GPC 2617

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
4
3
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



els at both ends of the polymer distribution.7 But this approach requires the
arbitrary truncation of the data region to exclude regions where signal-to-noise
ratio is low.  This exclusion adversely affects the results of calculation by
excluding data that are potentially useful.  

Additionally, the model for any calibration curve depends on the chro-
matographic system rather than on the polymer sample itself.  The necessity to
fit this curve with some empirical polynomial model, and then use the coeffi-
cients of this polynomial to calculate the values of the polymer parameters, also
systematically biases the results. 

We present advances in the treatment of data obtained from the multi-
detection GPC of polymers with broad, and especially, tailed molecular weight
distributions. 

The first advance is in the method of least-squares fitting.  We illustrate
this method through its application to both molecular weight-sensitive detec-
tors: LS and CV.  This advance allows for the inclusion of data obtained from
the tails of the polymer distribution in the estimation of calibration curves.  We
then describe a new approach to the problem of determining an intrinsic vis-
cosity law (intrinsic viscosity versus molecular weight) from the multi-detector
GPC measurements which circumvents the need to estimate calibration curves
from sample data.  Finally, we analyze some intrinsic viscosity laws based on
the specific models of polymer branching (e.g., random long-chain branching),8

and show how this model can be applied to the analysis of dual-detector mea-
surements to obtain estimates of the branching properties of polymers. 

These advances in the analysis of multi-detector GPC measurements, as
applied to DRI-CV data, have been implemented in Millennium 32 chromatog-
raphy software package, Version 3.0 and later (Waters Corporation, Milford,
MA, USA).9 We demonstrate their experimental verification and their advan-
tages as compared to traditional methods of analysis.  Elsewhere,10,i1 we discuss
other ideas which can be applied to multi-detection GPC data reduction. 

EXPERIMENTAL

All high temperature GPC experiments were performed with a new inte-
grated Alliance GPCV 2000 system (Waters Corporation) incorporating DRI
and differential CV detectors.12 A set of three 10 µm Waters Styragel columns
(7.8 mm I.D. × 300 mm) was used for size-exclusion separation: two HT 6E
mixed bed linear columns with effective MW range 5×103 − 107 g/mol, and one
HT 2 with effective MW range 102 − 104 g/mol. 

Twelve polystyrene narrow standards (Waters Corporation) between 2,630
and 4,480,000 g/mol molecular weights were used to create the universal cali-
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bration curve (logarithm of hydrodynamic volume versus elution volume). The
experimental points were fitted by a cubic polynomial.  The eluent and solvent
for all polyethylene and polystyrene samples was 1,2,4-trichlorobenzene (J. T.
Baker, Phillipsburg, NJ, USA) filtered and dried with silica.  The solvent for
polymer solutions was stabilized with 0.017% Santonox-R (Monsanto
Chemical Co., USA). 

Two polyethylene standards (NIST 1475 and NIST 1476) were purchased
from National Institute of Standards and Technology, Gaithersburg, MD, USA,
and low-density polyethylene synthesized with metallocene catalysts − from
Montell Polyolefins, Wilmington, Delaware.

The operating temperature of the column, detector, and injector compart-
ments was 150°C.  The injection volume was 0.3 mL and the flow rate was 1.00
mL/min.  Data acquisition was performed with the Graphical User Interface
(GUI) of Alliance GPCV 2000, data reduction was carried out with
Millennium ver. 2.15 (Figures 1 and 2), and Millennium 32 (Figures 3 and 4)
(Waters Corporation).

RESULTS AND DISCUSSION

Relationship of Physical Properties to Detector Measurements

A differential refractometer measures the refractive index change , which
is proportional to polymer concentration C, where

(1)

and where ν = dn/dc, the refractive index increment of the polymer. An on-
line capillary viscometer measures the pressure drop across a capillary tube
over that of the pure solvent, which leads to the specific viscosity  of a polymer
solution. 

Coupling these two detectors allows one to calculate the intrinsic viscos-
ity, where

(2)

If the hydrodynamic volume H for the polymer is known from the univer-
sal calibration curve, the polymer molecular weight M can then be calculated
from the relationship:
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(3)

The intensity of the light scattered by a polymer solution at any given angle
θ with respect to the forward direction, above that scattered by the pure solvent,
is proportional to the excess Rayleigh ratio Rθ.  The most important quantity for
polymer applications is the excess Rayleigh ratio at zero angle R0, which is pro-
vided directly by a low-angle laser light-scattering detector.  Multi-angle light
scattering (MALS) data need to be extrapolated to zero angle to obtain the value
of R0.  For DRI-LS detection, the polymer molecular weight is calculated using
formula

2620 BRUN ET AL.

Figure 1. Sensitivity of intrinsic viscosity law to a choice of “good data region” in tradi-
tional approach.  The molecular weight distribution and intrinsic viscosity law are plotted
for NIST 1476 low-density polyethylene sample: (1) MWD; (2) observed intrinsic viscos-
ity, [η]obs; (3) fitted intrinsic viscosity, [η]f it; (4) linear intrinsic viscosity, [η]lin; (5) branch-
ing index, g’. “Good data region”: log Mmin = 4.16, log Mmax = 5.67.  Calculations are per-
formed with Millennium 2.15, GPCV option (see text for details).
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(4)

where KLS = 4π2n0

2 / (λ0

4 NA), n0 = refractive index of the solvent, λ0 = wave-
length of the incident light in a vacuum, NA = Avogadro’s number.  A more gen-
eral Rayleigh scattering law includes an additional dependence on the second
virial coefficient.  Our method applies either to this simpler or to the more com-
plete expression. 

If the universal calibration curve is available, one can still estimate the
intrinsic viscosity from the DRI-LS detector combination, where

(5)

MODEL FITTING IN MULTI-DETECTOR GPC 2621

Figure 2. The same calculations as at Figure 1 with the exception of “good data region”:
log Mmin = 3.65, log Mmax = 5.70.
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Thus, either dual-detector combination can provide the polymer MWD,
which is given by the normalized C versus log M, intrinsic viscosity distribu-
tion (C versus log [η]) and the intrinsic viscosity law, which is given by log [η]
versus log M.  For DRI-CV detection, equations (1), (2), and (3) are used to
compute these values for each data point (slice) across the peak region. For the
DRI-LS combination, equations (1), (4), and (5) are used to compute the slice
values.

2622 BRUN ET AL.

Figure 3. Molecular weight distributions and intrinsic viscosity law plots for NIST 1475
high-density polyethylene (solid lines) and NIST 1476 low-density polyethylene (dashed
lines). The NIST 1475 data were fitted with Mark-Houwink equation (18) and the NIST
1476 data were fitted with the model (26) for randomly branched polymers.  The curves’
designations are the same as in Figure 1.  Calculations are performed with new
Millennium 32, GPCV option (see the text for details).

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
4
3
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



Triple-detector combination DRI-CV-LS eliminates the necessity to use
universal calibration to calculate both molecular weight and intrinsic viscosity
for each data point.  Thus, equations (1), (2), and (4) allow for calculation of
slice values.11

Effect of Detector Noise on Slice Measurements

Additive detector noise, seen as random fluctuations in the baseline having
zero mean and a well-defined standard deviation, is an irreducible component

MODEL FITTING IN MULTI-DETECTOR GPC 2623

Figure 4. The Millennium 32 GPCV report on low-density polyethylene sample. Random
branching model (26) was used for the intrinsic viscosity law fitting.  The curves’ desig-
nations are the same as in Figure 1.  The linear intrinsic viscosity [η]lin (line (4)) is the
asymptote to the [η]f it in the low molecular weight limit.
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of the measurement process.  As can be seen from equations (2)-(5), the mole-
cular weights and intrinsic viscosities for each slice are proportional to the
ratios of detector responses.  It follows that detector noise introduces noise in
quantities that depend on these ratios. 

At the tails of the distribution, these ratios do not produce physically
meaningful values.  For example, values of molecular weight and intrinsic vis-
cosity computed from slice ratios sometimes will not decrease monotonically
with increasing elution volume.  Thus, curves 2 in Figures 1-4 represent loga-
rithm of intrinsic viscosity log [η]obs calculated from the DRI-CV detector com-
bination as the ratio of two detector responses (equation (2)).  The dramatic
noise increase can be seen on both tails of the polymer distribution.

Fitting a smooth, multi-variate model to a time series of noisy data is gen-
erally an effective way to produce a more precise estimate of the measured
quantity at each sample time.  For the multi-detector combinations we are con-
sidering, the logarithm of the ratios,

(7)

both tend to be nearly linear functions of elution volume.  The calculations
are accomplished by fitting a smooth parameterized model to these ratios as a
function of slice number i or elution volume Vi, i.e., the total volume of eluent
that has passed through the columns up to some specific time ti.  Thus, a low-
order polynomial, as a function of elution volume, is an appropriate empirical
model that can be fit to these quantities.  Such polynomials then describe intrin-
sic viscosity and molecular weight calibration curves, respectively. 

Typically, a linear least-squares procedure is used to fit a polynomial to the
data.  In some cases, when data points tend to scatter non-randomly around the
fitted line, cubic splines are found to be a better choice for fitting.13,14 In the fol-
lowing discussion we will focus only on the least-squares fitting of a model to
data.

In performing a least-squares fit, equations (6) and (7) raise multiple dif-
ficulties near the tails of broad distributions.  The effect of the logarithm in
regions of low detector response is to increase the noise in log M and log [η],
affecting measurements in the both tails of the peak.  The negligibly small
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response of the refractometer in the denominator of equations (6) and (7) gives
rise to additional noise in log M and log [η] at the high-molecular-weight tail
of the distribution.  At the very ends of the peak tails, slice values of molecular
weight and intrinsic viscosity will not decrease monotonically with increasing
elution volume, and the noise in the responses can cause the ratios to have neg-
ative values.  The logarithm of a negative number is not defined.  This issue of
dealing with the logarithm of the response ratios is described recently,15 how-
ever, the authors proposed no solution to the problem.

Traditional Approach to Least-Squares Fitting

The usual assumption is that in peak tails, the quantities described in equa-
tions (6) and (7), because they appear dominated by noise, contain no useful
information, and their inclusion would compromise the accuracy of a model fit.
Least-squares fitting of models is then confined to the “heart” of the peaks
where the signal-to-noise ratios for these quantities are high.  This truncation is
followed by the extrapolation of the model results to the polymer tails.  Though
critical to obtain the MWD for the entire polymer distribution, the extrapolation
procedure is problematic.  The results are extremely sensitive to the choice of
the demarcation between the heart and tails of the peak (i.e., selection of so-
called “good data region”) and to the method of its implementation,15,16 espe-
cially for polymers with tailed distributions.  

For example, Figures 1 and 2 represent the results of quantitation of raw
data collected for highly branched, low-density broad polyethylene standard
NIST 1476.  The set of two chromatograms (refractometer and viscometer,
respectively) was treated using equations (1) - (3) with the universal calibration
curve obtained with a set of narrow polystyrene standards.  The fitted intrinsic
viscosity (log [η]f it) plot (curve 3) is obtained using a second-order polynomial
fit to data inside the “good data region” indicated by the vertical lines and then
extrapolated outside this region.  The linear intrinsic viscosity (log [η]lin) plot
(curve 4) is described by a straight line fitted to the first 25% of polymer dis-
tribution beginning with the start of the “good data region”.  This line repre-
sents a Mark-Houwink plot for the linear low-molecular weight portion of this
polymer.    

The ratio g′ = [η]f it / [η]lin calculated for each data point (curve 5) is the
branching index (branching contraction factor), which quantitatively character-
izes the degree of long-chain branching in every polymer fraction.  This quan-
tity should decrease monotonically with molecular weight for polymers with
long-chain branches.  The only difference between Figures 1 and 2 is the selec-
tion of the “good data region.”  One can see a dramatic difference in intrinsic
viscosity law plots and branching information (i.e., branching index plot)
caused by this selection. 

MODEL FITTING IN MULTI-DETECTOR GPC 2625

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
4
3
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



Given that the measurement errors in log[η]i = and log Mi

= 

tained from a fitting model be made more precise by the inclusion of weight
functions in each term in the least-squares fit?13,14 Weighting will allow in the
inclusion of data from a broader region, as data near the tails will be weighted
to have less significance than data near the heart of the peak.

However, to yield optimum results, the weight function must accurately
reflect the errors in the terms of any model polynomial function.  When any of
the values ∆N, R0, or ηsp becomes comparable to the magnitude of detector
noise (e.g., in the peak tails), weighting, as implemented in,13,14 is limited by
three factors:

Due to the non-linear nature of the logarithm, the errors in the terms of a
polynomial induced by detector noise are asymmetrical with respect to their
true values.  Weighting does not account for asymmetrical errors.

The errors in these terms are highly sensitive functions of the true values
for ∆N, R0, or ηsp.  This makes it essentially impossible for a weight to be mean-
ingfully computed in the peak tails, where the errors are fractionally large. 

Weighting does not allow the inclusion of slice data whose values result in
the logarithm of a negative argument.

Though weighting can be incorporated into the traditional formulation of
least-squares, it will still require an arbitrary truncation of the data region and
will not reflect the asymmetrical errors that the logarithms produce.

New Approach to Molecular Weight Calibration Curve Fitting

We illustrate the new approach17 to least-squares fitting by first applying it
to the determination of the calibration curve in DRI-LS detection.  This curve
is typically assumed to be a polynomial describing as a function of an Nth order
polynomial in V.  Thus the model to be fit is

FM � logMf it = C0 + C1V + C2V
2 + ... + CNVN (8)

where FM is a function of V and the fitting parameters C0, ⋅⋅⋅ CN.  Note that
the parameters C0, ⋅⋅⋅, CN describing the calibration curve depend on both poly-
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differ significantly from slice to slice, can estimates ob-
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mer structure and separation system including chromatographic conditions
(columns, mobile phase, and temperature).

In the traditional application of least-squares, the values for the parameters
C0, ⋅⋅⋅, CN are obtained by finding those parameters that minimize the following
expression

(9)

In this expression, the values for log Mi are the molecular weight estimates
obtained from the slice measurements using equation (7).  The values FM,i are
the model values for log Mf it at each slice i, and the sum is over the entire data
region (L slices).  Thus, the least-squares fit compares the model values FM,i to
a combination of data involving the logarithm of a ratio of measurements.  As
described above, the error in the slice estimates, log Mi, varies across the poly-
mer distribution and approaches infinity as the signal approaches zero, near the
baseline.  It is this unbounded increase in error that requires that the fitting
region be truncated.

Our new approach to least-squares fitting uses the same model, equation
(8), for the calibration curve, but directly compares the measurements of R0 to
a model of R0.  The quantity to be minimized is then 

(10)

Equation (10) compares the measured, excess Raleigh ratio R0,i, deter-
mined by light-scattering detection, to a model of that value.  Following equa-
tion (4), the model is the product of the refractometer response ∆Ni, optical con-
stant KLS, refractive index increment ν, and the molecular weight M i for this
slice, as given by the model of the calibration curve, 10FM,i, from equation (8). 

Equation (10) is a rearrangement of the same quantities used in equation
(9).  However, there are important advantages to this rearrangement.  Because
the errors in R0,i and ∆Ni are assumed to have zero mean and distributed as
Gaussian, the error in each residual term, R0,i�∆NKLSν10FM,i, will also have zero
mean and be distributed as a Gaussian.  Thus, all the chromatographic profile
data in the fit can be used, including points for which the measured values for
∆Ni and R0,i are consistent with zero and in fact have negative values due to
noise.  The above expression, thus, can be used to fit for data throughout the
peak region, including the tails.
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Further, equation (10) takes advantage of the fact that regions containing
zero signal still provide useful information to constrain the least-squares fit.
Thus, in the low-molecular weight region the light-scattering signal may be
negligible, yet this region can be included in the sum in equation (10).

Further Optimization Using Weighted Least-Squares

An estimation method is optimum if it yields parameters whose estimates
are unbiased and have minimum possible variance for a given level of detector
noise.18 Even though equation (10) will produce a more precise and accurate
estimate of the calibration curve than will equation (9), we can still ask: does
equation (10) represent an optimum solution to the problem of estimating a cal-
ibration curve from DRI-LS data? 

Fitting a multi-variate curve to data containing noise is a common problem
in the statistical analysis of data.  Maximum likelihood estimation yields opti-
mum estimates of parameters in multi-variate models.18 It describes how to find
parameter values that are unbiased and have minimum sensitivity to the noise
in the data.  Thus, if a set of experimental data di is compared with the model
values Di=Di(C1,⋅⋅⋅,CN), then the optimum (least-sensitive to noise) estimates of
the parameters C1,⋅⋅⋅,CN is obtained by finding those parameter values that min-
imize the following expression:

(11)

Here each squared difference between measured di and model Di values is
weighted by the square of the standard deviation .σi.

To obtain correct parameter estimates (i.e., the correct calibration curve),
only the relative noise values are important.  For example, if all the terms have
the same noise variance, then setting σi = 1 for all terms (unweighted least-
squares) will still yield the correct values for the parameters.   

According to theory18,19 the estimation procedures based on weighted least-
squares fitting (11) are generally optimum if the noise in quantities di is addi-
tive, has zero mean, is unbiased, and described by a distribution having standard
deviation σi. 

The noise properties of the refractometer, light scattering or viscometer
detectors correspond to the most common type of instrumental noise and pos-
sess all aforementioned properties.  Thus, the optimum estimate of the calibra-
tion curve is obtained from the weighted-least-squares generalization of equa-
tion (10), which is 
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(12)

where σ2

i is the variance of the quantity in the numerator (R0,i �
∆NiKLSν10FM,i).  The appropriate variance is 

σ2

i = σ2

LS + σ2

RI(KLSν10Ri)2, (13)

where σ2

LS and σ2

RI are the variances of the baseline noise associated with
the respective detectors, light scattering and refractive index.

In principle, equations (12) and (13) are an improvement over equation
(10).  But is that a significant improvement in practice?  If σ2

LS �� σ2

RI(KLSν10Ri)2

for each slice (which is possible if the light-scattering detector is noisier than
the refractive index detector), then the variance in each term of equation (10) is
a constant over the peak region.  Unweighted least-squares is than an appropri-
ate approach, and equation (10) yields an optimum estimate of the calibration
curve. 

In order for least squares fitting to be implemented, an algorithm must be
used to find the parameters C0, ⋅⋅⋅,CN that minimize S2.  As for any minimiza-
tion procedure, the final values for these parameters will not depend on the
details of the algorithm adopted to perform the minimization, as long as the
minimum is actually found.  In general, such minimization procedures require
that initial parameters values be found and that an initial value for S2 be com-
puted.  Theses parameters are then iteratively adjusted by a variety of standard
methods such as Newton-Raphson, Levenberg-Marquadt, simplex, gradient
search, and brute force search.19

New Approach to Intrinsic Viscosity Calibration Curve Fitting

In the previous section, we described the new approach to least-squares fit-
ting to determine the molecular weight calibration curve from the LS detector.
The same approach can be used in determination of the intrinsic viscosity cali-
bration curve from the viscometer detection.  In DRI-CV combination, the
intrinsic viscosity is typically modeled as an Nth order polynomial in elution
volume V.  Thus, the model to be fit is

F[η] � log[η]f it = C0 + C1V + C2V
2 + ⋅⋅⋅ + CNVN, (14)

where F[η] is a function of V and the fitting parameters C0, ⋅⋅⋅, CN.
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In the standard application of least-squares, the values for the parameters
are obtained by minimizing following expression

(15)

In this expression, the values for log[η]i are the intrinsic viscosity esti-
mates obtained from the slice measurements using equation (6).  The values
F[η],i are the model values for log[η]f it at each slice i, and the sum is over L slices.
Again, the least-squares fit compares a model to the logarithm of a ratio of mea-
surements. The error in the slice estimates, log[η]i, varies across the polymer
distribution and approaches infinity as the signal approaches zero, near the
baseline. 

As in the case of the DRI-LS analysis, the new approach to least-squares
fitting for DRI-CV analysis compares a measurement to a model.  The least-
squares problem then takes on the following form:

(16)

where ηsp,i is the measurement of specific viscosity.  The quantity 
is the model of specific viscosity. 

The advantages of equation (16) are the same as for equation (10).  The 

noise in the quantity is nearly constant over the whole peak

profile.  In contrast, the noise in the quantity (log[η]i � F[η],i) is unstable in the
peak tails.  Again, equation (16) can be used to determine the intrinsic viscos-
ity of a distribution throughout the whole peak region - in the heart of the peak
and in the peak tails.  This equation allows one to obtain log[η] as a polynomial
expansion in elution volume, thereby, arriving at the smooth intrinsic viscosity
calibration curve (14). 

Calculation of Polymer’s Distributions

Constructing the smooth molecular weight (8) and intrinsic viscosity (14)
calibration curves are important intermediate steps in determining the poly-
mer’s molecular weight and intrinsic viscosity distributions.  If both curves (8)
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and (14) are constructed from the triple detector combination (DRI-CV-LS),
then given the values for C, log[η]f it, and logMf it for each slice, one estimates
both polymer’s distributions.  If only a single molecular weight-sensitive detec-
tor is coupled to a GPC system, then the smooth hydrodynamic volume (uni-
versal) calibration curve (log H versus V) may replace that calibration curve,
which is unavailable due to the absence of the appropriate detector.  This can be
achieved via the relation log H = log Mf it + log[η]f it. 

The hydrodynamic volume calibration curve can be obtained for both dual
detection combinations from a set of polymer standards with narrow polydis-
persity.  In the case of the DRI-CV combination, the peak molecular weight for
each standard is to be known prior to the calculations, while for the DRI-LS
system the Mark-Houwink constants make it possible to construct the universal
calibration.

New Method for Estimating Intrinsic Viscosity Law

While the MWD and IVD are important characteristics of any polymer
sample, they still do not provide information about molecular structure of
macromolecules, e.g., their architecture.  This information can be obtained from
the intrinsic viscosity law (IVL), log [η] versus log M.  We can represent a
model for the IVL as

[η] = [η(C0,C1,...,CN;M)] (17)

where C0,C1,...,CN are the parameters that specify the distribution’s intrin-
sic viscosity as a function of molecular weight M.  For example, the empirical
Mark-Houwink relationship is given by 

[η(K,α;M)]�KMα (18)

where C0 = K and C1 = α.  Any IVL is the inherent property of polymer
sample in dilute solution. This means that its parameters C0,C1,...,CN depend on
molecular structure of polymer only, and not on the properties of a chromato-
graphic system, e.g., the column set.  

The model for IVL can be constructed through the additional fit from any
pair of calibration curves (molecular weight, intrinsic viscosity, and hydrody-
namic volume).  Thus, as triple detector data could obtain the two calibration
curves, log[η]f it versus V and log Mf it versus V, for the sample, then one could
eliminate V to obtain log[η]f it versus  for each slice.  A model of the form [η] =
[η(C0,C1,...,CN;M)] could be fit to these values to determine the parameters
C0,C1,...,CN.
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We have seen how dual-detector DRI-LS data can obtain the log Mf it ver-
sus V calibration curve for the polymer distribution.  With the addition of a suit-
able set of polymer standards and the assumption of universal calibration, DRI-
LS data can also determine the log[η]f it versus V curve for this sample, and thus
the sample’s IVL.

We will now describe in detail two ways that a distribution’s IVL can be
obtained from DRI-LS data.  In the first way, one obtains log Mf it versus V via
application of equation (10) to the DRI-LS data obtained from the sample.  One
next measures the molecular weight for the calibrators from the DRI-LS data
obtained from their respective peaks.  These molecular weights combined with
the prior knowledge of the calibrator’s Mark-Houwink constants yields the col-
umn’s hydrodynamic calibration, log H (V).  This determination requires that a
model curve, such as a low-order polynomial, be fit to the log H versus V val-
ues obtained from each calibrator.  Finally, the value for log[η]f it for each slice
follows from the definition log[η]f it = log H�log Mf it. 

The method just described has a significant limitation.  The accuracy of
the IVL depends on the accuracy of the sample-dependent calibration curve:
log[η]fit versus V.  Inaccuracy in this model will adversely affect the determina-
tion of the polymer’s IVL.  For example, even for a polymer with strictly linear
configuration described by linear Mark-Houwink equation, log[η]fit versus V
will generally be a non-linear function of elution volume V. 

We now demonstrate a new method for determining the IVL that elimi-
nates the need to determine this empirical calibration curve.  The key to the
method is to use the hydrodynamic calibration to re-express the IVL as a func-
tion of elution volume. This is done in three steps, as follows.

Given a model expression [η]=[η(C0,C1,...,CN; M)], we first obtain its
inverse, M=M(C0,C1,...,CN;[η]). We then combine this with the definition of
hydrodynamic volume H, H = M[η], to eliminate M. We now have a model for
the intrinsic viscosity as a function of H, as follow: 

[η] = [η(C0,C1,...,CN;H)] (19)

In the case of the Mark-Houwink relationship, the inversion can be
accomplished algebraically to yield Mi = ([η]i/K)1/α, and the elimination of the
dependence on M yields the desired form of the IVL:

[η]i = Hi

1/(1+α)Kα/(1+α), (20)

These two steps are purely algebraic manipulations that can be applied to
any IVL.  For more complex forms of IVLs, numerical inversion will be needed
to express the IVL in the form of equation (19). 
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The third step uses the column calibration obtained from the standards, log
H (V) to eliminate H in equation (19), leading to the parameterized model

[η i] = [η(C0,C1,...,CN;Vi)] (21)

Equation (21) describes [η] as a function of V, parameterized by the struc-
tural parameters C0,C1,...,CN, and not by an empirical form such as equation
(14).  The interpretation of equation (21) is straightforward.  Each slice can be
regarded as a separate experiment that has the potential to constrain the distri-
bution parameters C0,C1,...,CN.

Given the formulation of the IVL as expressed in equation (21), we can
find the values for theC0,C1,...,CN that minimize

(22)

Note that the calibration curve, log [η]fit versus V, is automatically obtained
as part of the determination of the IVL.  Again, equation (22) has the advantage

that the errors in are symmetrical and

finite for all slice values, and data at the baseline can be included.

The analysis of dual-detector DRI-CV data parallels that of DRI-LS data.
We have seen how dual-detector DRI-CV can obtain the log [η]f it versus V cal-
ibration curve.  With the addition of a suitable set of polymer standards and the
assumption of universal calibration, DRI-CV data can also determine log Mf it

versus V, and thus the sample’s IVL. 

Again, we can take two paths.  In the first way, one obtains log [η]f it versus
V via application of equation (16) to the DRI-CV data from the sample.  One
next measures the intrinsic viscosity for the calibrators from the DRI-LS data.
Combined with the prior knowledge of the calibrator’s molecular weights, and
a suitable model for hydrodynamic calibration curve, these intrinsic viscosities
yield log H (V). Finally, the value for log Mfit(V) for each slice follows from the
definition log Mf it (V) = log H(V)�log [η]f it(V).

The new method for determining the IVL again employs the log H (V)
obtained from the standards, so we can again express the IVL in the form given
by equation (20).  We then obtain values for C0,C1,...,CN by optimizing 
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(23)

with respect to these parameters.  Again, this new formulation expresses
the IVL in terms of the structural parameters and not the ones that describe col-
umn properties.

Application to Linear Polymers

For the empirical Mark-Houwink relationship, we can substitute equation
(20) into equation (23) and obtain 

(24)

which is the least-squares problem whose solution gives values of K and α.
The model value of [η]i for each slice i is then obtained from equation (20), and
the polymer molecular weight for this slice is calculated from the relationship
Mi = (Hi/K)1/(1+α).

In this proposed formulation, the model of the intrinsic viscosity law is
found without introducing an unneeded model that describes the elution of the
sample from the chromatographic columns.  In equation (24), the column enters
in only through the hydrodynamic volume calibration curve as determined from
the standards.  The parameters describing the intrinsic viscosity law are then
determined directly from the sample’s detector responses.  Again, in equation
(24), the errors in ηsp,i � Hi

1/(1+α)Kα/(1+α)∆Ni/ν are symmetrical and finite for all
slice values, and data at the baseline can be included.

Application to Branched Polymers

The intrinsic viscosity law across the whole polymer peak region provides
important information about the molecular structure of a branched polymer.
This information is especially important at its high-molecular-weight tail,
where even a slight deviation from the linear Mark-Houwink equation can indi-
cate significant change in macromolecular structure.  The opportunity to con-
struct this plot from the GPC data is a significant benefit of any multi-detection
system. 

Our new approach generalizes to any intrinsic viscosity law of the form
(17).  For intrinsic viscosity laws more complex then the Mark-Houwink equa-
tion, a simple algebraic inversion may not suffice to determine [η] as a function
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of H in closed form.  A numerical method for inverting the equation19 may be
employed as part of the minimization procedure.

In the case of a linear polymer, two Mark-Houwink coefficients K and α
are enough to account for the intrinsic viscosity law across the whole polymer
distribution.  A polymer with short-chain branches can also be described by
Mark-Houwink equation with the same exponent α as its linear counterpart, but
with lower value of parameter K.20,21 A more complex model is needed to
account for the intrinsic viscosity law for long-chain branched polymers.  The
Zimm-Stockmayer model describes the ratio g of mean-square radii of gyration
of polymers with and without random long-chain branches.22 Combined with
semi-empirical relations of the form8 g’ = gε, this model yields the following
equation for macromolecules with molecular weight M

(25)

where c1 = 9π/4, c2 = 7 for the three-branch point and c1 = 3π/4, c2 = 6 for
the four-branch point; [η]lin describes the intrinsic viscosity of the polymer
backbone without long-chain branching; λ is the chain branching frequency
(branching probability per Dalton), i.e., the number of branching points divided
by molecular weight of polymer chains, and ε is the shape (or structural) factor
which varies between 1/2 and 3/2.8 The randomness of branching means the
molecular weight independence of λ, which constitutes the main assumption
behind the model.22 Using the Mark-Houwink relationship for [η]lin, we obtain
the intrinsic viscosity law for randomly branched polymers:

(26)

which is applied for each slice i of a polymer distribution. 

As can be seen from equation (26), intrinsic viscosity is described by four
parameters, K, α, ε, and λ.  According to this model, the polymer is essentially
unbranched at low molecular weight side, and its intrinsic viscosity law is
asymptotically linear in this region and described by Mark-Houwink con-
stants, K and α.  This linear intrinsic viscosity plot is denoted curve 4 in Figures
3 and 4. 

Recall that the presence of short-chain branches can be indicated by the
value of parameter K.  The accuracy of determination of these two parameters
is affected dramatically by the low molecular weight portion of the chro-
matograms.  This is why the inclusion of this region in the least-squares fit is
so important.  
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At extremely high molecular weight, when branching dominates, the
asymptotic slope of the intrinsic viscosity law is less than α, and is given by
α�ε/2.  This region exists in highly branched polymers only.  The intermediate
region is affected mostly by the value of branching density λ.  This portion of
the chromatograms usually corresponds to high molecular weight fractions of
typical branched polymers, where the response of the concentration detector is
close to the noise level.  Again, the inclusion of this region is very important for
the accuracy of calculations.

More complex models for branched polymers may require empirical mod-
els, such as given by the polynomial expansion:

log [η] = log K + α1 log M + α2 log2 M + ⋅⋅⋅ + αNlogN M (27)

In Millennium ³² the determination of a polymer’s intrinsic viscosity law
and molecular weight distribution can be obtained for either: 

Mark-Houwink law, via application of equation (20),

Model for polymers with random long-chain branches, via the application
of equation (26), or 

Polynomial model, via the application of equation (27).  The polynomial
model for intrinsic viscosity is supported up to fifth order in log M.

Calculation of the Intrinsic Viscosity  Law for Polyethylene Samples

The detailed analysis of branched polymers based on the foregoing
approach is to be published soon.21 In what follows, we present just a few exam-
ples for the purposes of illustration.  Figure 3 demonstrates the results obtained
with new approach (16), (21) for two NIST broad polyethylene standards: high-
density linear polyethylene NIST 1475 and branched low-density polyethylene
NIST 1476 (the raw GPC data for the last one are the same as that of Figures 1
and 2).  The Mark-Houwink model (18) was used to process data for linear
NIST 1475 sample, while the randomly branched polymer model (24) (three-
branch point) was employed for branched NIST 1476 polyethylene. 

Practically the same values of Mark-Houwink exponent α was found for
both polymers (0.7261 for NIST 1475 and 0.7275 for NIST 1476), which
almost coincide with reported20 value 0.725 for these polymers obtained at
slightly lower temperature (TCB, 135°C).  At the same time, the values of K for
these two polymers are significantly different: 0.371 x 10-3 and 0.320 x 10-3,
respectively (see the difference between the solid and dashed lines 4 in Figure
3).  This difference is far beyond the reproducibility limit of the calculation and
can be attributed to short-chain branches in NIST 1476, obtained in free-radi-
cal polymerization. 
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This important information about polymer structure becomes available
through the novel algorithm just described.  This approach allows the inclusion
of regions that contain no signal caused by the polymer in solution in the least-
squares fit, e.g., baseline responses that fluctuate about zero from either, or
both, detectors.  This makes the results much less sensitive to integration and
considerably improves the accuracy of the measured sample’s MWD and intrin-
sic viscosity law obtained with multi-detection GPC.

Note that the model (26) appeared to be suitable for variety of polyethyl-
enes with long-chain branches.  Thus, Figure 4 represents the calculated multi-
modal MWD and intrinsic viscosity law curves for low-density polyethylene,
synthesized with the mixture of two single-site metallocene catalysts, produc-
ing a polymer with long-chain branching.  In spite of apparent complexity of
the molecular structure, the model (26) with four physical parameters K, α, ε,
and λ fits the observed intrinsic viscosity throughout the entire polymer distri-
bution. Note that K value obtained (0.37 ×10 −3) is the same as that of NIST
1475, which unequivocally indicates the absence of short-chain branches in the
polymer under investigation.

CONCLUSION

Significant expansion of polymer characterization capabilities of GPC
centers around on-line molecular-weight-sensitive detectors coupled to a con-
centration detector.  This multi-detector approach offers great advantages in the
accurate characterization of complex polymers, provided that results based on
ratios of measured signals are interpreted properly.  A novel method of fitting
multi-detector data to obtain more accurate MWD and intrinsic viscosity law
was derived.  A chromatographic profile obtained from one detector is com-
pared, in a least-squares sense, to a model that is a function of responses from
another detector.  

This model for optimization represents the appropriate calibration curve
(molecular weight or intrinsic viscosity) or the intrinsic viscosity law and is
used to fit measured chromatographic profiles.  The intrinsic viscosity law can
be described by Mark-Houwink relation for linear polymers; the randomly
branched polymer model for polymers with long-chain branching, empirical
low-order polynomials, etc.  This formulation of least-squares significantly
improves the accuracy of the measured sample’s MWD and other structural
characteristics obtained with multi-detector GPC.
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